IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Airy function - exact WKB results for potentials of odd degree

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 1301
(http://iopscience.iop.org/0305-4470/32/7/020)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 07:59

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2(1999) 1301-1311. Printed in the UK PIl: S0305-4470(99)98783-8

Airy function—exact WKB results for potentials of odd degree
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Abstract. An exact WKB (Wentzel-Kramers—Brillouin) treatment of 1D homogeneous
Schibdinger operators (with the confining potentigl¥, N even) is extended to odd degrees
N. The resulting formalism is first illustrated theoretically and numerically upon the spectrum of
the cubic oscillator (potentidy|3). Concerning the linear potential(= 1), the theory exhibits

a duality in which the Airy functions Ai, Aibecome paired with the spectral determinants of the
quartic oscillator = 4). Classic identities for the Airy function, as well as some less familiar
ones, appear in this new perspective as special cases in a general setting.

A number of quantum spectral properties have now become established (by means of WKB
theory, asymptotic or exact) for homogenegtispotentials on the real line having a discrete
spectrum (confining case, i.6V, even). After recalling the required results (section 1), this
work will mainly extend and apply the framework to odd powatgsection 2), then discuss,

in particular, the resulting picture for the Airy function whanh= 1 (section 3).

1. Summary of previous results

See [1] for a more detailed review.

Definitions and notations. The Schédinger operator, with all coefficients straightforwardly
scaled out, reads as [2-6]

N d? .
A% ~ gz +qV for N an even integer. 1)
q
(Obvious dependences upon the paramatexill be left implied.)
Over L%(R), H is a strictly positive operator; it has a purely discrete (nondegenerate)

spectrum{i;}x—0,1.2.., andi; 1 +oo according to the asymptotic Bohr—Sommerfeld law

bory = 27 (k + 3) +0o(1) k— oo in N (2)
which uses the classical actibgr/* (at the energy., for the Hamiltonianp? + ¢"), with
def N +2 2712 /1 3 1
= —— thegrowth order and by = r{— r{=+—1»,. 3
K= "N g AR / 2N ®)

Other dynamical constants describe the phasassuch thatI:I| L2(wR) IS Unitarily equivalent
toa H 2 this happens fab = «~/2 anda in the cyclic grouge’? | £ =0,1,..., L —1},
with

4; N
0= N_ZZ thesymmetry angle L = > +1 thesymmetry order (4)
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Since A commutes with the parity operatdt, it splits asA* & A1 + P); the
eigenfunctions of positive and negative parity carry the even and odd lalvetpectively.
Spectral functionsdefined next, may also be split accordingly.

The spectral zeta functions ([4, 5]).

Z(s) défZA;“ (and 7)) & 3 x,;S) (Res > ) (5)
k &
extendmeromorphicallyto all of C, with only simple poles located at (or amongst)=
1-2)u,j=0,1,2,....ForRes < u the series (5) diverge and the definitions must be
regularized, according to equation (2); e.g., in each parity sector,

S E dim 1Y g bou dg™ 1, if Re (6)
% £ Koo k<K ‘ Ay (—s+p) 27K e

with bothk, K even forZ*, odd forZ~. In particular,Z*(0) = i;ll (using equation (2)), and

, . b 1\ 1
z(©0) = lim_ { - ;( loga + ﬁ%ﬁ(low - ;) -3 |ong} for k. K S(7)

which in turn generates thedta-regularizejldeterminantsas detr = &' exp—Z*'(0).

The spectral (or functional) determinants ([5, 7]).D*()) gef det(H* +1): these arentire

functions, more explicitly given by

D*() = exp[-Z*' O] ] @+r/n0) (foru <1, ie., N > 2) (8)
kSad.
) o ZF(n)
_ _ 7% _ )"
_exp[ 7+ (0) ; = A)}
(foru # 1, i.e., N # 2, and|A| < Ag). 9)

The harmonic oscillatorN = 2) has a special status in the family: it is the solvable
case but also the ‘confluent’ case, i.e., the growth order becowtezrer (v = 1), and this
invalidates several formulae in their generic form given here; in particaiagl) are infinite
and equations (8), (9) diverge, a valid substitute specification being

2F1+A
D) = 28Y2/27274/2) (jFT) for N =2 (10)

HenceN = 2, potentially the only elementary example for the formalism under review, is
instead a pathological case.

The determinants admit semiclassical asymptotic expansions |Xfpr — oo
(largr| < © — §). These have quite stringent forms, actually simpler for the full determinant

D = D*D~ and the ‘skew’ ratiadd® &' D*/D: [4]

logD() ~ Z a;a1=2p (N #2) (with ag = (2 sinm ) "2bg)
Jj=0 . (11)
log DP(x) ~ Floga + > " d.a=N/2r,
r=1

The leading behaviours imply that and D*, as entire functions, are of ordgr(the higher
coefficientsa;, d, are also computable term-by-term).



Airy function 1303

Exact functional relations ([8,1]). The determinants satisfy a basic functional relation,
obtained by an exact WKB calculation (and corresponding to the reflection formutafpr

whenN = 2):
94D (D~ (€92) — e /4D (d? ) D™ (1) = 2i (N #2) (12)
i.e., €/4D;D; —e4DiDy = 2i

ef

upon introducing the generic shorthand notatio(-) aef D(€%.) (¢ being the symmetry
angle, and an integer mod.). Within identities like (12), all such subscripts are globally
shiftable modL, sincex can be freely rotated by“throughout.
Equation (12) was found [1] as an equivalent form of a multiplicative coboundary formula

linking the full and skew determinants, [5]
, DP(€¥)

DP(%)
. D}, .
ie., DL; = expi(—2®, + ¢/2) ¢=0,1,....,.L—1 (modL) (N #2). (14)
This in turn entails a consistency condition upbn embodied in thicocycle relation(of
lengthL),

~io/ = exp[-2id(1)] for () £ arcsin{D(E1) D))V (13)

L-1
Y o)) =Le/d =m/2 for evenN (N #2). (15)
£=0

Via the second equation (13), the full determinBrthereby inherits an autonomous functional
equation, circularly symmetric of ordér (and convertible to a polynomial form).

Spectral sumrules ([5]). Algebraicidentities arise from expanding either functional relations
(12) or (13) to all powera” aroundir = 0, with the help of equation (9); by equation (5), the
output is an infinite sequence of sum rules connecting various spectral moments:

[Z/(0) =] Z*(0) + Z~(0) = log sin% (n = 0) (16.0)

sin% Z () — sin% Z (1)=0 (N #2) (n=1 (16.1)

- N - — o\ _
sin= 2°(2) —sin>- Z (2)=S|nZ(2cosZ [Z*) — Z (1)]) n=2 (16.2)

i 1\ e 4 in(n+3) 2z = PAZ* (). 2
Sin <I’l — 5) E (n) —sin <I’l 5) E (n) = n{ (m), (m)}lgm<n

(rankn) (16n)

where P, is a polynomial, homogeneous of degreander the ruling that each* (m) is of
degreen. The relative weights in the left-hand sides recur with pefidd =, yielding Z (n)
whenevem is a multiple of L. For suchn = 0 modL, Z(n) can be further reduced to a
polynomial in the{Z (m) }1<n<n ONly: this follows by directly expanding the closed functional
equation forD itself, equation (15), in place of equation (12) (an option which, however,
misses all the other identities of ranks# 0 modL). By contrast, naz*(n) or Z~(n) ever
comes alone on a left-hand side, which precludes similarly closed functional equati@n’s for
or D~ separately.
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Exact quantization conditions ([6, 1]). Exact quantization formula& la Bohr—Sommerfeld
for the spectrum ultimately derive from equation (12), as

1 «
2 (M) =k+ =+ = k=0,2,4,...
+( k) 2 2

1 «
25 _ (M) =k+= — = k=1,3,5,...
(M) 573

. defN—2
with = — (17
K N+2( )

where, excepting the cagé = 2 (singular but solvable otherwise, . (1) = 1/4),

2.0 -1 Arg DEE0) (. > 0) (18)
AgDEE ) = > () de() E argiy —e7%2) (18")
¢y

i.e., ArgD* denotes the determination of abg which is continuous over the half-line
[0, e7'¥00) and vanishing at = 0, and this is the sum of the anglgs(1) (€ [0, 7)) subtended
by the vector(0, 1) at the points €.

The system (17), (18) appears to specify the exact spedelfreconsistentlyvithin each
parity sector. It amounts to a fixed-point condition for the (nonlinear) mapping defined by
the application of equations (18) followed by (17), upon sequences of trial kafélshat
are asymptotically correct([6, 1]: to be more precise, we require their compliance with
equation (2)).

This fixed-point mechanism is moreover easy to implement numerically within some preset
tolerances, which has to be nonzero to render the computational scheme finite-dimensional
(by inducing a highk cut-off): upon such truncations, then, the straightforward loop iterations
of these maps appear to converge towards the correct spectra, consistently \i@hian@ at
geometric rates [6]. Suchc@nstructiveenactment of equations (17), (18) works if, essentially,
some form ofcontractivityholds for the underlying map. What we now have in this direction
is no rigorous statement yet, but the numerical observation of such a behaviour in every case
performed, plus partial analytical evidence: e.g., the mapping can be simplified by treating
the spectrum as continuous [1], in which approximation its contraction factor is-jgsind
k] < 1 by equation (17).

2. Extension to odd degrees and applications

The above framework will now be strengthened in two ways, both involving a violation of
analyticity through the invocation ajdd degreesV, in which case the confining potential
becomesq|".

From evento oddv. All previous results actually follow from solving a connection problem

for the Schodinger equatioH + 1)y (¢) = 0 along ahalf-line, e.g., fromg = 0 to +co. The

requiredcomplex WKRalculations were performexkactly{5] thanks mostly to the analyticity

of the potential (whose homogeneity also eased the operations but at a more concrete level).
Consequently, these procedures applyod polynomials gV as well, with the

understanding that all results refer to the spectra specified by the same boundary conditions

on the half-lind0, +00) as in the case of eveM: specifically, ay = 0, Neumann for positive

parity, resp. Dirichlet for negative parity. But these in turn precisely select the positive, resp.

negative parity spectra of the potentig|" also whenv is odd
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All previous formulae extend to odd under this interpretation, with just one forced
explicit change: the ordet of the symmetry group, being an integer, cannot retain the value
N/2 + 1 from equation (4), but becomes twice that instead:

L=N+2 for oddN (29)
while ¢ stays unchangeaonsequently, the cocycle relation (15) becomes

L-1

Y o) =Le/d=m for odd N. (20)

=0

e Example:N = 3. We may test the extended formalism upon the confining homogeneous
cubic oscillator(the operatod = —d?/dg? + |¢|3), for which
223/3 (1)}
=2 ¢ =4r1/5 L=5 bo = sfr(é) =ap K= 1. (21)
7T

Among the several results which can be validated, we describe the exact quantization
formulae (17), (18) as they probe the functional relation (12) the most sharply. So, we iterated
equations (18), (17) (under a tolerance value 10-°) upon the input data consisting of each
parity subsequence of the semiclassical spectrffir(given bybo A”*® = 27 (k + 1)), and
we readily observed convergence to these lowest eigenvalues:

k even k odd

0 10229479 1 31505627

2 63702932 3 $%220764 22)
4 12870297 5 1669373

6 20000879 7 23745471

8 27592421 9 31530790

The convergence appears to be governed by contraction faetd¥233 for positive parity
(k, k¥’ even) and +(189 for negative parityk( k' odd) (cf the continuous-spectrum prediction
1
= K = 5)
Separately, we diagonalized the matrix#fin the orthonormal eigenfunction bagis, }
of the harmonic oscillator-d?/dg? + g2, using

1)’”’*’”” FGA+N+n +n") — (m' +m"))

4 m'tm"(n" — 2m")!(n" — 2m")!

2n’+n”n/!n//!

T

N
<wn’||CI| hbn”) = <
o<m'<n’/2
o<m”<n’ 2

(23)

forn’ = n” mod 2, zero otherwise; in each parity sector we applied several truncations (in the
size range 20-40), and retained the eigenvalue figures as far as they were fully stable. These
results then showed complete agreement with equation (22). (Here, the brute-force calculation
might well be the less reliable one: equation (23) generates numerous large entries, through
cancellations between even larger terms.)

The exact method is thus validated to an accuracy 0§400~7, whereas its input (we used
the semiclassical spectrum) was off by as much a$ ¢fér the ground state)igo) ~ 0.920791).

e GeneralN: an alternative exact approach exists for odd and even degrees alike: it takes
the fully analytic potentia™ (nonconfining forN odd) and privileges a different spectral
function, namely &tokes multipliee-normalized here aS(1) = e '%/*¢c()) relative to [9, 2)].

The present analysis connects to that approach and recovers its results, through the identity

Co = (2i)"X(€“2D} D, —e7¥/2D3Dy) (for N # 2). (24)
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For instance, whelV = 3, C(A) obeys a closed functional equati@,Cs — Co = 1 (the
subscripts being shiftable mod 5; cf [9; 2 ch 5, section 27; 10]). Here, this equation is not just
verified by the expression (24) (using equation (12)); it is thus sedredto the extent that
the D* in equation (24) can be constructed by using the fixed-point equations (17), (18) to get
their zeros (cf equation (22)) and then forming the Hadamard products (8). (By contrast, we
do not know how to specify any of the other entire functions, liker C, as directly).

(Note: remarkably, the samé = 3 functional-equation structui€Cs; — Co = 1 also
appears in integrable 2D field-theory models that involve dilogarithms [11], and in the first
Painlewe function [12].)

Duality Within homogeneous problems, it is worthwhile asking which analytic potentials
g"V, ¢"'" might share the same rotation symmetry group, since the latter imprints the structure
of spectral functions in a basic way. The answer dality relation,

p+¢ =21

/

1 1

implying —+—=2 L=1L K =—k (25)
%

and NN' =4.

One solution isN = N’ = 2: thus the harmonic oscillator is self-dual (but also singular).
However, there exists one (and only one) other solution: the\pair4 (homogeneous quartic
oscillator [5]) andN’ = 1 (Airy equation [13]).

Hence, the Airy function (as the relevant solution of the linear potential) turns out to
be conjugated with the spectral determinantg4f This form of duality may be weak (not
implying exact links between the solutions of both problems) but still liable to reflect strong
structural resemblances (now that the framework accommodates even aNdodtie same
footing).

3. Airy function versus quartic oscillator

We will now basically scan properties of the Airy functioN (= 1) [13] as they appear in
the global setting of thigy|¥ problem, and especially analyse its duality with the quartic case
(N =4)[4,5].

Already, (unlikeN = 2,) bothN = 1 andN = 4 share the status oégular values for
the whole formalism as they giveonintegergrowth ordersw. Thus, the various constants
corresponding t&v = 4 are

V2ir (1Y
,u:?1 0 =21/3 L=3 by = 3/ F(Z) aozbo/\/i K:%.

(26)

Then (almost) all previous formulae also hold in theiw (generic) formfor N = 1, upon
simply resetting all the constants:

M=% ¢ = 41/3 L =3 bozg ao=—% K:—%. 27)

Special features of the Airy caseWhenN = 1, the eigenvalues are those of the potential
lg|, namely (up to sign) theerosof the Airy function for negative parity and those of its
derivative for positive parity (the connection with their usual notation [13] bejrg —A,_1,

a, = —Xy_2,5s =1,2,...); the Bohr—Sommerfeld rule (2) (plus its corrections, omitted here)
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reproduces their known asymptotic behaviour. The corresponding spectral determinants are
given by

D™ () =27 Ai(b) D (M) = =27 Ai’(L). (28)

(Normalization, the only nonobvious issue, is determined by adjusting the asymptotic forms
(112), which are expressly without constant terms, against the known asymptotic expansions of
Aiand Ai' [13].)

Thus, the extension of the formalism to alldeveals itonlyelementary regular example,
given by the Airy functions (notwithstanding that their underlying poteritidlis the most
singular one at 0).

Still, one amendment is specially mandated wh€n = 1, namely a (standard)
regularization [7] for those series and products which turn divergept &s1: thus,Z*(1)
are now to be computed from equation (6) instead of (5), and equation (B)faccordingly
gets replaced by

Di()\.) — e*Zi,(O)"'Zi(l))\ 1_[ (1 +A./)\,k)e7k/kk- (29)

even
k odd

The basic determinantal identitiesWe first compare the functional relations (12) and their
consequences for the two conjugate cases,

€7 D*(W) D~ (jA) — e D () D™ (1) = 2i for N=4 (p =21/3) }
e"3p* (WD~ (%1 — e DY (2D (1) = 2i for N=1 (¢ = 41/3)

(j & 2im/3y, (30)
The latter, by equation (28), is simply the classic Wronskian relation betweerafd Aij2-),
which both solve the same Airy equation:

WIAI (), Ai (j2)] = (27) e/, (31)

Here the Airy function A{z) acts in two ways, as soluticand as spectral determinant of the
Airy equa}ion; this confusion of roles stems from the property (specifi¥ te- 1) that the
operatorH + A solely involves the combination variabie= g + A.

For N > 1, by contrast, the determinants are not known to solve any second-order
differential equation; while this remains to be confirmed in full generality, the fact is already
certain forN = 2 (due to the presence 0f(z): cf equation (10), and [2, ch 5, section 27]).
Still, the N = 1 andN = 4 functional relations are highly similar (duality!); but their different
phase prefactors will suffice to create an essential distinction (as equation (33) will show).

If the discrete symmetry rotations are performed upon either of equations (30), a closed
system ofL = 3 equations follows:

e*/*DiD, — e ¥*D;D; =2i
e¥*D;Dy — e *DgD; = 2i (32)
e“/*D{D; — e “/*Di D, = 2i.

With the D,” as unknowns, this is a linear system, whose 3determinant has the value
A = 2isin3p /4Dy D1 D;. (33)

o N =4: ¢ = 2r/3, thusA # 0; then the odd spectral determinddt (= D) can be
solved as a functional of the even one (and vice versa), in rational terms:

_ D} —j?D; — D} Dy —jD; —j*D;
Dy =2 D+D1+ 2 and D} 0 Dle* 2
12 12

(34)
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(the subscripts being shiftable mod 3).

e N = 1: ¢ = 4r/3, thusA = 0, a sharply different situation. Now the system cannot be
solved for theD, , and the elimination process yields a (linear) relation among these instead,
(and likewise forD*),

Dy +j°Dy +j*D; =0 ie., Ai()+jAij)+j2Ai([?) =0

D} +jD; +j’°D} =0 e, [AI()+]AI()+]2Ai({%)] =0
hence both identities simply reflect the classic three-solution dependence relation for the Airy
equation (but now in partnership with the nonlinear equations (34)).

(35)

The cocycle functional equations.Their comparison will already uncover a less obvious
(new?) identity for the Airy functions.

e N = 4: in the quartic case, the cocycle relation (15) (of length 3) implies
sin®d, = cog®dy + ®1); expanding and squaring the cbg away in succession yields
2 sin®gsin®; sind, + sir? ®q + sir? ®; + sirf ®, = 1 and then, by the definition ob
in equation (13), [5]

DoD1Dy = Do+ Dy + Dy + 2. (36)

e N = 1: the search for a nontrivial Airy counterpart of equation (36) must also be

directed at the full spectral determinant, which now reads as

D = —47 AiAi’ = =2 (Ai?) (37)
the relevant cocycle relation has again lenfth= 3, but this time it is equation (20); it now
implies cosb, = — cog Py + ®1) and then, proceeding just as before,

DZ + D? + D3 — 2(D1 D5 + DyDg + DoD1) +4 =0

Do=—-2n(Ai®Y()  Di=-2n(Ai¥(?)  Dy=-2n(A%(").
Thus, (Ai?)" exhibits a functional equation which is nonlinear, inhomogeneous, and with
ternary symmetry like equation (36) (but rederivable by elementary maatsterior).

(38)

The Stokes multipliers. Here, their expression (24) plus the functional relations (12), (36)
lead to diverging behaviours in the two cases.
e N = 4: the Stokes multiplie€ (1) and the full determinanb (1) get related both ways,
Do=C1Co—1 > Co = (DoD, — 1)Y/? (39)
(the subscripts being shiftable mod 3); hedtstands equivalent t® as a spectral function,
and indeed it has a functional equation very close to equation (36), [10]
CoC1Co=Co+Cq+Co. (40)
e N = 1: C()) degeneratesto a constant L) [2] hence it has lost all spectral information.
(More generallyD (1) might be unrelated t@' (1) for odd N.)
Therefore, duality is devoid of content under this specific angle.

The spectral sum rules.
e N = 4: for the quartic case, the simple substitutipe= 2r/3 in equations (16) yields

[5]:

Z'(0) = —log2 (41.0)
1IZ') -z =0 (41.1)
AR VAVES VARV AE (41.2)

ZQ) =iz -1z(HZ@ etc. (41.3)
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The left-hand side coefficients then recur with perloe- 3 inn; all Z(n) with n = 3p reduce
to polynomials in the Z (m)}1<m <, only, deducible directly from the functional equation (36)
for D alone.

e N = 1: by settingp = 4n/3 in equations (16), similar sum rules are produced
for the moments of the zeraxf Ai(—) for odd parity, resp. A{(—X) for even parity (i.e.,

Z=(n) =3 (=a)™, Z"(n) = 3 (—a)™"),

Z'(0) = —log(2/~/3) [= 2V (0) + Z~'(0)] (42.0)
Z*1) =0 (42.1)
Z7(2) = 2~ (1)? (42.2)
ZR =2 V*-3271VZ2"@=32z1°-32(1)Z(2) etc. (42.3)

All properties of the quartic case persist£ 3 again) butin addition here, the closure property
of identities within zeta values of the same parity label holds not onlZ{&p) but also for
Z*(3p +1) andZ~(3p + 2), thanks to the autonomous functional equations (35yfband
D~ respectively.
Now, moreover, the Airy function is also a special function, whose Taylor series is
accessible by other means [13], and this amounts to a full knowledge of the expansion (9). The

‘spectral’ sum rules above thereby get completed by the ‘special’ sum rules below, in which

o &' AI'(0)/ Ai(0) = 398(27)"1 T'(2/3)2 ~ 0.729011 133:

Z*'(0) — Z7'(0) = —log p (by definition) (43.0)
Z (1) = —p (43.1)
7@ =1/p (43.2)
Z ) =-p+3(==)2"3F =1 (etc) (43.3)

This last identity is exceptional for being so simple (theerse cubes of the zeros of
Ai’(—z) sum up taunity), andrational: all higherZ* (n) can be thus expressed wh¥n= 1,
but asnontrivial (rational) functions ofp, hence ar@ever rational-valuedgain.

Equations (42), (43) remind us of known sum rules for integer powers of zeros of the Bessel
functionsJ, ([14], and references therein) but do not strictly correspond to them, sirige Ai
is a Bessel function of aonintegerpower ofz (and we know of no earlier explicit mention of
any sum rule for Airy zeros). Both sets of identities, however, have the same abstract basis:
they express the consistency between two full specifications of the given function, a Taylor
series like equation (9) and a Hadamard product like equations (8), (29).

e For generalV > 2, by contrast, thé&v = 1 explicit values have extension§the same
formonly for Z*'(0) andZ* (1) ([4, 5 appendix C, D] stated the results fér= 2M only [4],
but this limitation is unwarranted):

Z'(0) = log [(N +2)% / r (%)} (¢ = N4f 2)

Y g1y af 2 ¥ (9 20 3¢ 1,9
ZM -z =@/ [N+2} Sm4r(4n)r<4n)r<4ﬂ)/r<2+2”>
(44)

(the values for other parity labels follow through the identities (16.0), (16.1)).

The exact quantization of eigenvalues he exact quantization mechanism (17), (18) is mainly
governed by the symmetry angle and it degenerates, with quantization becoming fully
explicit, forg = 7 (harmonic case). With respect to this ‘critical’ system, the quartic oscillator
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o N = 4

k=+1/3
e=-1\3 , DMiAd

%

s o= 1

Figure 1. Geometrical depiction of the exact-quantization summanda.) (at» = 15.0), in the
odd spectral sector. Upper half-plane: for the quartic oscillator, ysiaglr /3 in equation (18);
lower half-plane: for the zeros of Ai-A), usingey = 47/3 in equation (45).

spectrum (withp = 27/3, k = +3) and the Airy zeros (withp = 47 /3, k = —3) assume
exactly mirror-symmetric positions; in particular, a key ingredient of the exact formula, the
kernel function ar@\’ —e~'¥ 1) (associated with the linear ‘flux operator’ [6, 1]), takes opposite
values in the two cases.

However, this symmetry is lost at some stage of the procedure (and we see no manifest
link between the two resulting spectra either). Thus, the system (17), (18) is consistent and
stable under iteration only when applied to spectra having the right growth ardehich
differs in the two case§4(f0r N =4, versus% for N = 1). We therefore have the following
consequences.

e N = 4: sinceu < 1, equations (17), (18) hold in their original form (figure 1, upper
part). When applied to (definite-parity) input sequerﬂd&sonly subject to equation (2) (i.e.,
bor0¥* ~ 27 (k + 3), with by from equation (26)), the iteration scheme exhibits contractive
convergence to the exact eigenvalues, with rati@s0.392 for positive parityX, £’ even) and
+0.333 for negative parityk(, ¥’ odd) [6].

e N = 1: nowu > 1 hence the series in (18diverges like(A sing) times the series (5)
for Z*(1); its proper regularization, as dictated by equation (6)fer 1 and equation (29),
is then

- 2
+ai _n : 1/2 /
Arg D=(e %)) = KILrTJOO { k/E<K¢k’()\) — ASII’](p;AK } for k', K§& (45)
Here the summandg; (1), still defined as in equation (I8but with ¢ = 47/3, are all

negative and decreasindigure 1, lower part); it is now the counterterm +A(«/§/n))\}</2

which outweighs the whole sum to produce a positive and increasing left-hand side, as required
for equation (17).

Thereupon, the numerical scheme behaved'fer 1 as for the quartic case. When applied
to each parity subsequence of the semiclassical spemfgoﬁl(given by%k,ﬁo)g/z =2n(k+ %)),
the iteration of equations (17), (38(45) exhibits convergence to the Airy zeros, with (roughly
estimated) contraction factors0.37 for positive parity (zeros of Aik, k' even) and-0.25
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for negative parity (zeros of Ak, k' odd). (However, whereas fa¥ > 2 this scheme is
comparatively quite efficient, foN' = 1 it should not beat special-purpose algorithms for
obtaining the Airy zeros; also in this case, the regularization (45) proceeds through large
cancellations which strongly degrade the final accuracy.)

In conclusion, exact fixed-point quantization also works for the spectra of Airy zeros.
Then, moreover, the conjugation symmetry shows this spectrum quantizationetabity
as nontrivial as that of the quartic oscillator, even though the Airy equation itsatbre
elementary than its quartic—or even its harmonic (and trivially quantized)—analogue.
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